Challenge

A high number of pop-ups, emails, text messages and calls are constantly rocketing the screens of gadgets with customers devoting less time on average to each notification. Thus, telco operators should use time and frequency with caution and use the extent amount of collected information, from previous interactions, to increase the effectiveness of market campaigns without jeopardizing customer experience.

The current case study was part of a project together with a major telco operator to develop a prediction-prescription engine capable of increasing the sales volume performed by a call center operation without eroding customer loyalty.  

Solution

The used methodology consisted in a three-step approach:

Predictive models - Development of a predictive model to leverage information into predictions of ideal contact timing using a tree base boosting machine learning algorithm considering a large set of variables grouped in four main segments: customer profiling variables, former contacts made, gadget and tv-box usage.

Optimize the timing of contact - Creation of a prescriptive engine capable of prioritizing clients contacts, which were organized in ordered lists per day/hour according to contacting a client outside its preferred contacting window.

Methodology validation - A one-week pilot test was devised, running on an operational dialer adjusted to apply the newly design contacting strategy. Customers were randomly divided into control and test groups, assuring that both groups had a similar behavior in every metric.

Results

The pilot results showed a 23% increase on the commercial activity as well as a higher customer satisfaction as the sales conversion was achieved with less contact attempts. In the aftermath of the project, the methodology was internally productized, sustaining the promising results achieved during the pilot test.

Related Case Studies

INTEGRATED LOGISTICS PLANNING ON A TELCO RETAILER
CLIENT MAILING OPTIMIZATION FOR A RETAIL COMPANY

Insights